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Abstract

As climate change increases the vulnerability of Small Island Developing States’ marginalized coastal communities and ecosys-

tems, it is necessary to evaluate the health and resilience of their natural landforms and infrastructure inventories. For example,

mangroves could be a central component of coastal adaptation strategies for these sites due to their storm surge attenuating

properties. One such forest is located in Haiti in the Grand-Pierre Bay, south of Gonaives and at the mouth of the Artibonite

Valley, a region important for its agriculture. A remote sensing study of the Grand-Pierre Bay mangroves was conducted using

imagery from PlanetLabs, machine learning tools, and vegetation health indices to identify and track mangrove cover, health,

and spatio-temporal changes between 2010 and 2020. Detected changes in cover and NDVI (Normalized Difference Vegetation

Index) values display a retreat of mangrove cover from the sea, with most of the retreat and health loss occurring during the

2013-2016 Pan-Caribbean drought, which was also experienced in Haiti. While the forest displays recovery post-drought, health

increases and new establishments are concentrated on the landward side of the forest, and continued retreat is occurring on

the shoreline, indicating a landward migration of the forest. This migration may, however, not occur fast enough to offset the

losses on the coast, and targeted conservation efforts may be required to sustain and enhance the forest’s resilience.

1



manuscript submitted to Earth’s Future

Remote Sensing Study of Mangrove Forest Health and1

Resilience in the Grand-Pierre Bay, Artibonite, Haiti2

Alexandre E. S. Georges1*, Mark T. Stacey1, Deanesh Ramsewak2
3

1University of California, Berkeley4
2Centre for Maritime and Ocean Studies, The University of Trinidad and Tobago5

Key Points:6

• The 2013 Pan-Caribbean drought weakened the Grand-Pierre Bay mangrove for-7

est in Haiti. Recovery was uneven, with continued coastal retreat.8

• Tide gauge data in Haiti showed local sea-level rises partly coinciding with the Pan-9

Caribbean drought. This combination of environmental factors likely stressed the10

mangrove forest, contributing to the observed pattern of coastal retreat and land-11

ward migration.12

• The forest’s landward migration is unsustainable as the available landward space13

may not support continued mangrove establishment, raising concerns about the14

long-term resilience of the forest.15
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Abstract16

As climate change increases the vulnerability of Small Island Developing States’ marginal-17

ized coastal communities and ecosystems, it is necessary to evaluate the health and re-18

silience of their natural landforms and infrastructure inventories. For example, mangroves19

could be a central component of coastal adaptation strategies for these sites due to their20

storm surge attenuating properties. One such forest is located in Haiti in the Grand-Pierre21

Bay, south of Gonaives and at the mouth of the Artibonite Valley, a region important22

for its agriculture. A remote sensing study of the Grand-Pierre Bay mangroves was con-23

ducted using imagery from PlanetLabs, machine learning tools, and vegetation health24

indices to identify and track mangrove cover, health, and spatio-temporal changes be-25

tween 2010 and 2020. Detected changes in cover and NDVI (Normalized Difference Veg-26

etation Index) values display a retreat of mangrove cover from the sea, with most of the27

retreat and health loss occurring during the 2013-2016 Pan-Caribbean drought, which28

was also experienced in Haiti. While the forest displays recovery post-drought, health29

increases and new establishments are concentrated on the landward side of the forest,30

and continued retreat is occurring on the shoreline, indicating a landward migration of31

the forest. This migration may, however, not occur fast enough to offset the losses on32

the coast, and targeted conservation efforts may be required to sustain and enhance the33

forest’s resilience.34

Plain Language Summary35

As climate change’s impact on Small Island Developing States becomes more ap-36

parent, evaluating how their natural environments cope is essential. Coastal communi-37

ties in these states often benefit from natural defenses like mangrove forests for protec-38

tion against flooding. This study focuses on the Grand-Pierre Bay mangrove forest in39

Haiti, located south of Gonaives and at the mouth of the Artibonite Valley, a vital agri-40

cultural area.41

By analyzing satellite images and land cover maps, we tracked changes in the for-42

est’s size and health between 2010 and 2020. Results showed the forest was stressed and43

retreating, with the most loss occurring between 2013 and 2016, coinciding with the Pan-44

Caribbean drought. While inland areas are recovering, the coastline mangroves continue45

to decline, indicating landward migration.46

We suggest that reduced freshwater input and rising sea levels contributed to this47

decline. If these current trends continue, this would have serious implications for man-48

grove resilience and their ability to protect against flooding in this area.49

1 Introduction50

In the face of escalating climate change impacts worldwide, governments and com-51

munities are looking at possible adaptation pathways to mitigate its effects. For Small52

Island Developing States (SIDS) in the Caribbean, the use of natural landforms such as53

wetlands in coastal defense infrastructure provides some optimism. Due to increased hur-54

ricane activity in the North Atlantic (Murakami et al., 2020), the Caribbean islands are55

particularly vulnerable to the impacts of climate change on coastlines, with increased56

flooding due to storm surges being expected as a result. In Haiti, this increased coastal57

vulnerability disproportionately impacts disadvantaged urban and rural populations and58

critical economic centers; out of the 10 communes (municipalities) with the largest num-59

ber of people living in income poverty in 2012 in Haiti, 7 are coastal (Pokhriyal et al.,60

n.d.). Mangrove forests, which are native to the region, may be viable candidates as land-61

forms to be implemented in adaptation strategies in Haiti and the larger Caribbean re-62

gion.63
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Experimental and observational studies have shown mangroves’ capacity to abate64

the flooding impacts of storm surges by reducing water elevation and velocity due to drag65

in their complex root systems. Field observations of storm surges created by Category66

3 Hurricane Wilma along the Gulf Coast of South Florida showed effective attenuation67

of storm surges by the Everglades mangroves, with the surge amplitudes decreasing by68

a rate of up to 40-50 cm/km across the forest (Zhang et al., 2012). An experiment us-69

ing scale models of mangroves by Maza et al. (2017) indicates reductions in the veloc-70

ity field by up to 50 percent and turbulence kinetic energy increases by up to fivefold within71

the root zone compared to upstream conditions. And while it is hard for numerical sim-72

ulations to accurately quantify mangrove forests’ storm surge attenuation property, hy-73

drodynamic modeling studies have demonstrated their attenuating effect on storm surge74

amplitudes and flood durations (Montgomery et al., 2019; Chen et al., 2021). Mangroves’75

ability to restrict water flow across the forest width then leads to reductions in peak wa-76

ter levels, flooding extent, and flood duration in areas within and behind the forest.77

At the same time, the degree to which mangroves are effective in providing coastal78

protection depends on their health and cover, which are influenced by environmental pro-79

cesses. Hydrodynamic properties, such as tidal patterns and hydroperiod, play a role in80

the propagation and zonation of mangroves (Crase et al., 2013; Salas-Rabaza et al., 2023).81

Salinity levels, closely linked with hydrodynamics, play an essential role in the well-being82

of mangroves, as prolonged high salinity exposure may result in restricted growth of trees83

(Krauss et al., 2008) and has been shown to be the primary contributor behind several84

mangrove diebacks around the world (Lagomasino et al., 2021; Lovelock et al., 2017).85

Other identified environmental factors influencing mangrove health include temperature,86

light, nutrients, and sediment supply. Consequently, climate events like droughts or long-87

term phenomena such as sea-level rise may threaten mangrove forests’ health and resilience.88

Before assessing the potential of current mangrove covers in the Caribbean as nat-89

ural infrastructure, it is essential to evaluate how their recent health has changed due90

to stressors related to climate and human activities. Remote Sensing tools and techniques91

are well suited to answer this question as they offer frequent data points on ecosystems92

and landforms, letting observers track these systems’ evolution over time and their re-93

sponse to external factors or events. Examples include the monitoring of crop growth94

and health (Sadeh et al., 2021) , monitoring the resilience of mangroves to sea level rise95

(Duncan et al., 2018) and measuring their biophysical characteristics (Jean-Baptiste &96

Jensen, 2006). Hence the use of satellite imagery has been shown to be appropriate for97

studying mangroves. Tools such as machine learning and vegetation indices can be used98

to track the extent and health of mangrove forests over time. Coupled with other cli-99

mate data, these time series can help us determine the impacts of climate events on these100

forests.101

In this paper, we develop and apply a workflow to assess and track mangrove for-102

est health over the last decade. Satellite images of mangrove forests in Haiti taken be-103

tween 2010 and 2020 are classified and analyzed to distinguish mangrove covers from other104

land covers. This lets us measure their extent evolution through indices and metrics that105

reflect forest health. This analysis then allows us to quantify changes in mangrove health106

in Haiti, helping us understand the relationship between their resilience and recent cli-107

mate events.108

2 Data and Study Sites109

The Grand-Pierre Bay mangrove forest, located at the mouth of the Artibonite Val-110

ley, was selected for this study due to its significant size (largest single mangrove extent111

in Haiti), and proximity to population and economic centers.112
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Satellite imagery from PlanetLabs’ RapidEye archive is used for our analysis. With113

a 5m pixel resolution, this satellite lets us better distinguish smaller-scale forest cover114

details than other satellites such as Landsat (30m resolution). PlanetLabs also provides115

high temporal resolution with near-daily observations, letting us follow seasonal changes116

in our sites. While featuring fewer bands than Landsat for analysis, the provided 5-band117

imagery (Red, Blue, Green, RedEdge, and Near-Infrared) is still well-suited to land clas-118

sification, particularly when used in conjunction with indices such as the Normalized Dif-119

ference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI).120

As such, intra-annual observations are taken between 2010 and 2020 at the Grand-Pierre121

Bay site. Cloud cover permitting, several observations are taken in a single month. With122

a decade-long observation period, we can observe seasonal and inter-annual patterns of123

mangrove health and cover.124

Baie de Grand-Pierre, Haiti (Grand-Pierre Bay)125

Figure 1. The Grand-Pierre Bay mangrove forest (outlined in solid white) is located on the

Central coastline of Haiti, South of the city of Gonaives. The major rivers’ paths (La Quinte,

L’Estère and Artibonite) are highlighted. Major settlements are outlined in dashed lines.

The Grand-Pierre Bay Mangrove Forest (outlined in white in Fig.1) is located south126

of Gonaives, the 3rd most populated city in Haiti, in the Artibonite department. It is127

the largest single extent of mangroves in Haiti and is fed by the La Quinte and L’Estère128

rivers, the two most important rivers in this department after the Artibonite River. The129

mangrove forest sits seaward of a lagoon, acting as a buffer for parts of the Artibonite130

Valley coastline. Its close proximity to Gonaives and the Artibonite Valley mouth is sig-131

nificant as this region houses one of the largest disadvantaged urban populations of the132

country, with the commune of Gonaives holding the largest number of people living in133

income poverty in Haiti in 2012 (Pokhriyal et al., n.d.). The Artibonite Valley is also134

one of the country’s most important agricultural production regions, with over 70 per-135

cent of the country’s rice production, a local staple, occurring in the valley (“Assessing136

the Potential Impact of Climate Change on Rice Yield in the Artibonite Valley of Haiti137

Using the CSM-CERES-Rice Model”, n.d.).138
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Caroni Swamp, Trininad-and-Tobago139

Figure 2. Caroni Swamp (outlined in solid white) is located on the Western coast of the is-

land of Trinidad, South of the cities of Port-of-Spain and San Juan.

To ground-truth the analyses that we present below, which focus on Grand-Pierre140

Bay, we require independent observations of land cover in order to train the land clas-141

sification model. The primary site providing this data is the Caroni Swamp (outlined142

in white in Fig. 2), which is located south of the capital city of Trinidad and Tobago,143

Port-of-Spain. It is the country’s largest mangrove wetland, protected under the Ram-144

sar Convention for International Wetland Protection. The swamp is home to numerous145

channels, lagoons, and intertidal mudflats. Unlike the chosen Haitian sites, the Caroni146

Swamp is surrounded by highly urbanized areas, with Port-of-Spain and San Juan to the147

north and Chaguanas to the southeast and built infrastructure backing the mangrove148

on its landward edge. This site is used for ground-truthing our land classification model.149

2.1 Climate Forcing during Observation Period150

Rainfall estimates from the Climate Hazards Group InfraRed Precipitation with151

Station data (CHIRPS) are used to follow climate trends in the Grand-Pierre Bay man-152

grove forest over our observation period (Fig. 14). CHIRPS is a 35+ year quasi-global153

rainfall data set which combines interpolated station data and gridded satellite-based154

precipitation estimates from NASA and NOAA (Funk et al., 2015).155

Additionally, tide gauge data from around the island of Haiti/Hispaniola (across156

Haiti and the Dominican Republic) are used to monitor the local sea level variations (Fig.157

15).158

3 Methods159

Our approach involves using remote sensing indices (defined below) to support the160

classification of images and the calculation of metrics to be analyzed.161
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3.1 Indices162

Normalized Difference Water Index - NDWI163

The Normalized Difference Water Index (NDWI) assesses the presence and extent164

of surface water bodies. It is used here to mask the open water pixels surrounding the165

mangrove forest to aid the land classification process. This is done using the Green and166

Near-Infrared bands, following the relation defined by McFeeters (1996):167

NDWI =
Xgreen−Xnir

Xgreen+Xnir

Our land classification and analysis uses the land surfaces obtained after masking out168

open water using NDWI based on a threshold of 0.2, with values higher than this thresh-169

old masked as open water.170

Normalized Difference Vegetation Index - NDVI171

The Normalized Difference Vegetation Index (NDVI) is a simple indicator of green172

vegetation’s presence, density, and health. This index uses the Near-Infrared and Red173

bands of observations as follows:174

NDV I =
Xnir −Xred

Xnir +Xred

Applied to our mangrove cover after masking it out from other land covers, we gauge175

the density and health evolution of our mangroves through time series and looking at176

the spatial difference of NDVI distribution between 2020 and 2010:177

dNDV I = NDV I2020 −NDV I2010

3.2 Land Classification using Machine Learning178

Unsupervised Learning179

Initially, we explored employing unsupervised learning to quickly determine what180

features and structures can be found and classified from our images and surface reflectance181

data. The unsupervised classified images helped us familiarize ourselves with the sites’182

likely covers and distributions. This analysis was conducted using the K-means cluster-183

ing algorithm, popular for image segmentation (Ikotun et al., 2023). This method ini-184

tializes k centroids (where k is the user-defined number of clusters). The centroids are185

then recomputed as the mean of all the data points in the cluster, and the assignment186

of data points to clusters is repeated until the centroids no longer change or a stopping187

criterion is met. For land classification, K-means clustering can group pixels in an im-188

age based on spectral properties, such as their reflectance values in different bands. It189

can identify different land cover types in an image by grouping similar pixels, such as190

water, vegetation, and urban areas.191

We used this method on the surface reflectance values to classify the land cover into192

four groups, which we then associated with open water, mangrove vegetation, viable land,193

and bare soil (mud flat). The viable land classification refers to pixels containing either194

low-density vegetation or bare soil fit for colonization by mangroves. After masking out195

the open water and bare soil covers, the remaining mangrove vegetation and viable land196

covers were compared over the years to track the patterns in mangrove cover change and197

are considered in our supervised analysis. While K-means clustering is a quick method198

of classifying land cover, we found that it was not sufficiently accurate for our classifi-199

cations, and it produced inconsistent results within and across observations. As such,200

we instead use a supervised method for our analysis, as outlined in the next section.201
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Figure 3. Ground truthing points and classifications from Caroni Swamp, Trinidad and To-

bago.

Supervised Learning202

Supervised learning is a machine learning paradigm for classifying objects using203

a set of input objects such as a vector of variables and their desired or human-labeled204

(”supervised”) outputs to train a model. This model can then be used to classify or pre-205

dict the output of other similar input objects. In a remote sensing context, this set of206

input objects or training data may look like geolocated points or polygons containing207

pixels labeled as a certain land cover type or classification. The spectral values of the208

pixel(s) contained at the point or polygon are then associated with a given category. This209

is particularly useful here as we can control the classification scheme and make use of210

ground truthing to validate our models. We used supervised learning to classify the pix-211

els of our satellite imagery into different land type categories, letting us distinguish and212

track different land cover types systematically. While unsupervised classification meth-213

ods such as K-means clustering can also be used for land classification on single obser-214

vations, they lack the higher accuracy and re-usability of supervised methods, which lets215

us reuse the same trained model on unseen data, giving us a tool to classify land on newly216

acquired satellite images continuously.217

For this study, we use ground-truthing data from the mangroves found in Caroni218

Swamp, Trinidad and Tobago. The data was collected during a two-day field outing where219

the locations of different land cover classes were recorded using a Garmin GPSMAP 78sc220

device. The data comprises 98 data points across the forest (as seen in Figure 3), and221

is made of the following classes: open water, mangroves, mudflat, intertidal zone, urban,222

and crops/other vegetation. The data is split in a 70-30 ratio, with 70 percent of the la-223

bels randomly selected to be part of the training set and the remaining 30 for our model’s224

testing validation set. In addition to the training set from the Caroni Swamp field cam-225
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Figure 4. Additional model training points from Caracol Bay, Haiti

Figure 5. Additional model training points from Grand-Pierre Bay, Haiti
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paign, training data points from other mangrove sites in Haiti, namely in Grand-Pierre226

Bay (Fig. 5) and Caracol Bay (Fig. 4) were also used. These points and their labels were227

identified using an initial unsupervised classification and confirmed using visual imagery228

of the sites. As such, while our training set was taken both from this remote identifica-229

tion and ground truths in Caroni Swamp, the validation is exclusively composed of ground230

truth data points in Caroni Swamp. Using a model trained with this data across Caribbean231

sites is appropriate here as the tracked ecosystems and landforms are similar, with the232

same mangrove tree species and land cover types being found across the studied sites.233

The algorithm used for our land classification is the Histogram-based Gradient Boost-234

ing Classifier (referred to as HGB hereafter) provided in the scikit-learn Python library.235

HGB is an implementation of the Light Gradient Boosting Machine (LightGBM) frame-236

work (Ke et al., 2017) , a widely-used machine learning solution using tree-based learn-237

ing algorithms and favored for its’ fast training speed, low memory usage, and accuracy.238

LightGBM (and the HGB implementation) was chosen over other machine learning of239

for its’ native support for missing values (NaNs) which would undermine our workflow,240

as NaN’s arise from clouds and any open water pixels that are removed from our images.241

We use HGB to classify land cover based on the pixels’ reflectance values in different bands.242

The identified mangrove pixels are then masked, isolated, and used in our analysis with243

vegetation indices to quantify the mangrove forest cover and extent changes as laid out244

in the following workflow.245

Model Validation246

Because the classifications made by the model are estimations, we use bootstrap-247

ping to conduct its validation. Bootstrapping is a resampling technique where we cre-248

ate multiple new datasets by randomly sampling subsets of the original dataset with re-249

placement. By taking samples from our original dataset and training and evaluating the250

model multiple times, we can better assess the model’s performance variability and ro-251

bustness.252

Results from validation of the trained model on randomly sampled ground-truthed253

points in Caroni Swamp, Trinidad and Tobago, show robust model performance. This254

is conducted by resampling, classifying and testing randomly sampled points from the255

validation set in a bootstrap process, with the data being resampled 800 times. Testing256

a sample point involves checking whether the classification from the model matches the257

observed classification from ground-truthing.258

To assess the model’s performance, we look at the distribution of the mean clas-259

sification accuracies for each resampling step during the bootstrap process within a 95260

percent confidence interval. With this process, we find with model accuracies falling within261

a 91.4 and 95.9 percent range (Fig. 6). While this shows high general model accuracy,262

we are also interested in class-based accuracies. The confusion matrix pictured in Fig.263

7 A. shows the prediction accuracies for each class in the main diagonal, while the off264

diagonals show what each class is misclassified as and the ratio of misclassifications. We265

see a range between 84 and 96 percent for the predicted classes, with the lowest being266

crops and the highest being mangroves. While the percentage of misclassified crop pix-267

els seems significant - with 3.9% misclassified as urban, 4.3% as mangroves and 8.1% as268

open water - the total number of misclassified pixels during the bootstrapping process269

(as seen in Fig. 7B. with the unnormalized matrix) are dwarved by the total number of270

correctly classified urban, mangroves and open water pixels. As we are principally in-271

terested in the cover of mangroves and unvegetated areas of the forest, such as mudflats,272

we have concluded the model to be robust and appropriate enough for the sake of this273

analysis.274
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Figure 6. Distribution of Model Accuracies from Bootstrapped Validation Runs.

3.3 Workflow275

Our workflow started with acquiring and preprocessing satellite images for which276

the land cover was classified. We retained the mangrove and mudflat classes for our anal-277

ysis of the classified land cover types. These classes and the NDVI band in our imagery278

were used to create products such as time series, metrics, and maps for our analysis. The279

different components of this workflow (pictured in Fig. 8) and their interactions are out-280

lined in the following subsections.281

Preprocessing Images282

Images obtained from Planet’s archive are screened based on cloud cover, with ob-283

servations presenting less than 10 percent of cloud cover being retained for analysis. This284

leaves us with 45 images between 2010 and 2020. Unfortunately, no images were found285

to be suitable in 2017, as well as the 2011, 2019, and 2020 Wet seasons. While these gaps286
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Figure 7. Confusion Matrix of Predicted vs. True Labels of the classification model on Caroni

Swamp ground truth points. A. Normalized confusion matrix. B. Unnormalized confusion matrix.

Figure 8. Methods and Tools Workflow

in the data may mean losing some of the finer details of mangrove health progression,287

we can still make out the overall trends in the 2010 to 2020 period.288

Before they are used for either model training or classification of images, the satel-289

lite images are preprocessed by masking the open water and urban areas using the NDVI290

and NDWI indices (defined below). This masking relies on thresholds in these two in-291

dices, with NDWI larger than or equal to 0.2 indicating open water pixels and NDVI lower292

than or equal to 0.2 indicating urban/non-vegetated pixels. Masking open-water and ur-293

ban areas significantly reduces the complexity of these covers for the model, making it294

more accurate at predicting these categories.295

Model Training and Selection296

Following preprocessing, reflectance values across bands are sampled at the loca-297

tions of our training and validation data points. The hyperparameters of our model were298

tuned using a grid search, and particular attention was given to the band weights. Be-299
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cause bands and layers such as RedEdge, NIR, and NDVI are good at detecting and dis-300

tinguishing vegetation from other cover types (Gandhi et al., 2015), as well as stress within301

vegetation (Boiarskii & Hasegawa, 2019), we give them a higher class weight in our model.302

The final parameters used can be found in the Appendix.303

Land Classification and Postprocessing304

Once the model trained and selected, we used it to classify the 45 observations from305

Grand-Pierre Bay. From the classified images (featuring open water, mangroves, mud-306

flat, intertidal zone, urban, and crops/other vegetation categories), we created new maps307

featuring mangrove vegetation and unvegetated regions (by combining mudflats and in-308

tertidal zones), leaving us with maps containing only the perceived extents of the man-309

grove forest by excluding urban, open water, crops, and other vegetation categories. These310

new maps were then used to compute the metrics defined below on the vegetated and311

unvegetated sections of the forest.312

3.4 Metrics313

Gross Cover Change314

The gross cover change of mangroves for a given site is the first metric we use to315

track physical changes in the wetland. While it does not tell us anything about forest316

density and spatial distribution of vegetation, it is an easy-to-calculate metric for a high-317

level understanding of how the mangrove evolves. The gross cover of a single observa-318

tion is calculated by counting the number of pixels classified as mangroves and multi-319

plying that number by the resolution of a single pixel, as provided by the specifications320

of the utilized satellite instrument. The Gross Cover Change is then the difference in gross321

mangrove cover between the two observation dates.322

Unvegetated to Vegetated Ratio - UVVR323

The Unvegetated to Vegetated Ratio is an index that helps establish vegetation cover324

status and track wetland changes (Couvillion et al., 2021). It does so by taking the ra-325

tio of unvegetated pixels (such as mud flats) to the vegetated pixels (like mangroves in326

our case). The closer to zero our UVVR, the more vegetation there is in our site and the327

more dense this forest is. At values of UVVR above 1.0, the forest has significant regions328

of unvegetated, exposed soil. As such, increases in UVVR over time indicate loss of man-329

grove forest, which could be due to natural disasters, changes in environmental condi-330

tions, or deforestation due to human activity. Conversely, decreases in UVVR denote af-331

forestation. We implement this simple relation as follows for each observation:332

UV V R =
#mangrove

#mudflats+#intertidalzone

where # is the ”number of pixels of.”333

4 Results and Discussion334

Our analysis of forest health dynamics in Grand-Pierre Bay then revolves around335

the spatio-temporal changes in NDVI values within the mangrove vegetation pixels, as336

identified by our supervised classification algorithm and their distribution. The NDVI337

observations are sorted and aggregated per seasons and years. Haiti presents 2 distinct338

seasons: wet and dry, with the wet season going from April to October, and the dry sea-339

son going from November to March.340
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Figure 9. Aggregated mangrove pixels and their NDVI values. A. Mangrove cover and NDVI

in 2010. B. Mangrove cover and NDVI in 2020.

4.1 Change in NDVI341

To capture and analyze the spatial changes in mangrove health, we use and com-342

pare the aggregated pixels classified as mangroves and their NDVI values in 2010 and343

2020 (Fig. 9). Displayed in those images are the pixels classified as mangroves for each344

year, as well as the NDVI values within them. The yellow colors stand out as locations345

where forest health is suffering, and the difference between 2010 (left) and 2020 (right)346

can most strikingly be seen along the seaward edge, with the 2020 image showing de-347

teriorating forest health along its boundary.348

By formally taking the difference in NDVI values between the aggregated data for349

the years 2010 and 2020 (dNDVI), we can identify and map pixels in the 2020 cover with350

decreases and increases in NDVI, with negative dNDVI values signifying reduced veg-351

etation health or death, and positive values signifying increased health or growth. As352

seen in Figure 10, the forest includes regions of decline and growth. This pattern here353

is displayed in terms of percentage change for a given pixel. While the change can have354

larger magnitudes than 100 percent, we limit the scale to +100 and -100 for a better vi-355

sualization of the spatial distribution of change; with NDVI values of vegetation gener-356

ally ranging between 0.2 and 1, the death of mangroves is seen as sharp declines from357

the vegetation range into values close to zero or negatives as cover transitions to bare358

soil/mud and open water. Conversely, new growth and establishments display sharp in-359

creases in NDVI values into the vegetation range. Because NDVI varies between −1 and360

1, these sharp changes frequently create relative changes larger than 100 percent (i.e.,361

a pixel with a positive value in 2010 could be negative in 2020). Displaying the full range362

of percent change then puts a highlight on the deaths and new growths of mangroves,363
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Figure 10. Change in NDVI within mangrove cover between 2020 and 2010.

while losing the finer details of decreasing and increasing health in perpetuating man-364

groves.365

The declines are concentrated in the sea-facing areas (seaward), particularly in the366

central embayment of our site in Baie de la Tortue, while pockets of growth appear in367

the lagoon and land-facing areas (landward). This spatial distribution indicates a land-368

ward retreat of the forest. With areas showing declines in NDVI of 100 percent and more,369

indicating the possible death of vegetation, the forest is experiencing diebacks on its coastal370

front, while having renewed health and growth next to the lagoon.371

4.2 Mangrove Cover Change372

Similarly, we use the 2010 and 2020 aggregated mangrove covers (pixels classified373

as mangrove) to capture the change in mangrove cover. Through comparison with the374

2010 land cover classification, we identify pixels in the 2020 land cover classification in375

which mangrove was lost (the pixel was classified as mangrove in 2010, but not in 2020),376

mangrove was gained (was not mangrove in 2010, but was in 2020), and remained the377

same (was classified as mangrove in both 2010 and 2020). This mangrove cover change378
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Figure 11. Change in mangrove cover between 2010 and 2020.

map (Fig. 11) shows areas of mangrove retreat and new growth. The spatial change in379

NDVI showed strong health declines seaward, and increases landward. This is corrob-380

orated by the change in mangrove cover, with systematic retreat seen seaward, partic-381

ularly around Baie de la Tortue, while new growth is seen across the landward bound-382

ary of the forest.383

The changes in mangrove health across the forest were stark enough to trigger diebacks384

and also change the forest’s cover composition. Using the change in detected mangrove385

cover, we observe reduced mangrove cover mainly in the Baie de la Tortue between 2010386

and 2020. Following the gross mangrove cover and UVVR progression and their year-387

to-year percent change in Table 1, we see a sharp decline in mangrove cover and UVVR388

in 2013, followed by a timid and varied recovery of mangrove cover, most likely driven389

by new growth landward of the forest. While there was a strong initial recovery of cover390

and UVVR in 2014, this recovery stalls in 2017, and the forest cover and ratio of veg-391

etation to unvegetated did not recover to pre-2013 levels, implying that while the for-392

est showed some resilience, it displays a net loss of cover, and the recovery and landward393

migration of cover did not keep up with the continued loss on the coastline.394
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Table 1. Mangrove Cover and UVVR Evolution

Year Mangrove Cover (km2) Percent Change UVVR Percent Change

2010 198.688 – 1.065 –
2011 200.989 1.158 1.091 2.513
2012 211.319 5.139 1.192 9.216
2013 187.708 -11.173 0.985 -17.360
2014 195.841 4.333 1.060 7.643
2015 198.585 1.401 1.058 -0.186
2016 201.019 1.226 1.098 3.729
2017 195.354 -2.818 1.013 -7.731
2018 198.919 1.825 1.061 4.760
2019 190.856 -4.054 0.947 -10.784
2020 196.018 2.705 0.983 3.802

With this new growth landward within the lagoon and intertidal zones, the Grand-395

Pierre Bay mangrove forest is effectively migrating landward and retreating from the coast-396

line. This process is unfortunately unsustainable, as it appears that even over the 10-397

year observation period, the landward progression of the mangrove was insufficient to398

offset the loss of forest on its seaward edge. Additionally, there is the question of space,399

as not all of the intertidal zone may be suitable for new establishments, and that space400

is limited. This has implications for the coastal defense properties of this mangrove for-401

est in the future that will need to be further studied to better assess its role in the coastal402

protection of this region.403

4.3 Spatio-Temporal Change in the Forest404

This pattern of decline and growth in the forest was not a constant spatial or tem-405

poral process. In Fig. 12 , stacked ridge plots show the seasonal variation of NDVI val-406

ues found in the forest across the observation period. NDVI values from all observations407

are aggregated per season, wet and dry, across the decade of observations, with each ridge408

displaying the distribution of values for each season. A look at seasonal NDVI distribu-409

tions within the mangrove forest, while having alternating trends pre-2013, shows a con-410

sistent decrease in mangrove health after the 2013 dry season. This decline slows down411

in 2016, with distributions having smaller left tails and lower upper bounds 2018 forward.412

This move and change in the distributions may indicate a reorganization in the forest413

structure. This restructuring of the forest would hint at an underlying environmental414

process driving this redistribution of cover.415

Two possible candidates are sea-level rise and changes in climate and precipitation.416

Between 2013 and 2015, Haiti suffered through the unprecedented Pan-Caribbean drought,417

which heavily impacted precipitations, freshwater outflows, and precipitation-evapotranspiration418

balance in the region (Herrera et al., 2018). Precipitation estimates from CHIRPS show419

a sharp decline in wet season precipitations in the Artibonite region. Figure 14, which420

displays the distribution of precipitations in wet and dry seasons from 2000 to 2021 wa-421

ter years, features a strong decline between 2013 and 2016, with lower means and heavy422

precipitation in both the wet and dry seasons, confirming lower precipitation and fresh-423

water inputs in the forest.424

Coincidentally, tide gauge data around the island of Haiti showcase rises in local425

sea level between 2010 and 2015, followed by a decrease between 2015 and 2017 (Fig. 15).426

While the lack of long-term, continuous tidal data in the region makes it hard to char-427

acterize regional sea-level rise, this local variation in sea-level across the island indicates428

possible sea and wave action stressors on the coastline of the mangrove forest.429

–16–



manuscript submitted to Earth’s Future

Figure 12. Seasonal Distribution of NDVI values within mangrove cover in Grand-Pierre Bay.

The green dotted line represents the NDVI threshold for healthy vegetation (NDVI = 0.7).
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Figure 13. Progression of NDVI changes during the 2010 decade. A. Features the pre-drought

changes (2010-2013). B. Features change during the drought period (2013-2015). C. Features

post-drought changes (2015-2020).

This change in structure can be seen by looking at the time progression of spatial430

change in forest health. (Fig. 13) shows the spatial change in NDVI between the follow-431

ing three periods: pre-drought 2010-2013 (Fig. 13A.), drought 2013-2015 (Fig. 13B.),432

and post-drought 2015-2020 (Fig. 13C.). While some light decline can be seen in the Baie433

de la Tortue, the forest sees increases in NDVI in most locations. The 2013-2015 drought434

period saw a uniform decline in the forest, most accentuated in coastal-facing areas. The435

post-drought recovery of the forest is, however, not uniform, with the decline continu-436

ing in the coastal facing regions and light increases in NDVI occurring in the landward437

regions. Looking at these three periods, we observe that the Pan-Caribbean drought co-438

incides with an acceleration of the seaward loss of mangroves.439

We hypothesize that the reduced freshwater inputs from the drought likely raised440

the salinity levels in the forest, leaving mangroves more vulnerable to sea action and other441

environmental stressors. A review on the environmental drivers of mangrove establish-442

ment and early development by (Krauss et al., 2008) frames temperature, light, flood-443

ing, salinity, and nutrients as the major ecophysiological health factors for this critical444

life stage of mangroves. While we were not able to acquire observations of local temper-445

ature or light changes, it is safe to say that the combined effects of drought and rising446

local sea levels would disrupt flooding regimes, freshwater inputs, and nutrient inputs447

from rivers. These disruptions would potentially raise salinity levels in the forest, decrease448

nutrient inputs, and expose the coastal front of the forest. The spatial variability in man-449

grove health and cover change is then most likely the result of the combined actions of450

regional sea-level rise on weakened mangrove trees in low-lying areas farthest from river451

outflows, which were likely most impacted by high salinity during the drought, leading452

to diebacks, and more difficult reestablishment in the same areas.453

5 Conclusions454

A sharp decline in mangrove cover and health was observed during the 2013-2016455

Haitian drought, followed by a spatially heterogeneous recovery, with most of it occur-456

ring on the landward area of the forest and continued retreat happening along its sea-457

ward edge, particularly along the shore of Baie de la Tortue (Fig. 1). This indicates re-458

silience to environmental stressors in the forest, but not an equal one; as the forest re-459
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Figure 14. Estimated Precipitation Distributions in the Artibonite Region. Estimations are

generated by ClimateEngine.org through the CHIRPS dataset (2000-2020).

covers from lowered freshwater inputs and local rises in sea-level, the forest migrates land-460

ward. This landward migration is unsustainable, as it may not be able to occur fast enough461

to keep up with the increased frequency and severity of climate change induced environ-462

mental stressors, and as not all of the available space landward is suitable for mangrove463

establishment.464

To ensure the continuation of the protection benefits of this mangrove forest, tar-465

geted conservation and restoration efforts may be needed on forest’s most vulnerable re-466

gions on the coastline, while supporting the further establishment of mangroves land-467

ward. Based on these new understandings of how mangrove forest may evolve under cli-468

mate forcing, future work may include hydrodynamic studies to quantify the change in469

protection services offered by this landform. Only with an integrated consideration of470

how the ecology and the climate forcing evolve can we achieve a resilient future that makes471

most effective use of these natural protective features.472

Open Research Section473

Rainfall estimates can be accessed from the Climate Hazard Center database at474

UC Santa Barbara via the ClimateSERV online toolkit: https://climateserv.servirglobal.net.475

To obtain the data, follow the ”Getting Started” link, then upload a zipped shapefile of476

the Artibonite River Watershed as an Area of Interest (AOI). This file is available in the477

project’s GitHub repository under datasets/Shapefiles/Artibonite AOI.zip. Next,478

select ”Observation” as the Data Type, choose ”UCSB CHIRPS Rainfall” as the Data479

Source, set the Calculation to ”Average,” and specify a date range from 01/01/2000 to480

12/31/2020. Ensure that you ”Add Query” and then ”Submit Query.” After process-481

ing, the dataset will be available for download as a .csv file.482

Alternatively, the raw precipitation raster files are accessible in the CHIRPS dataset483

directory at https://data.chc.ucsb.edu/products/CHIRPS-2.0. Monthly rainfall es-484

timates for the Caribbean are available in the camer-carib monthly directory, while global485

daily estimates can be found in the global daily directory. Using the AOI, mean daily486

precipitation can be derived for the same time period.487
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Figure 15. Yearly mean sea levels from tide gauge data in Haiti and the Dominican Republic.

Tidal gauge data in Port-au-Prince, Punta Cana and Puerto Plata are hosted by488

the University of Hawaii Sea Level Center and can be accessed through GESLA (Global489

Extreme Sea Level Analysis) (Haigh et al., 2021), (Woodworth et al., 2016), (Caldwell490

et al., 2015): https://gesla787883612.wordpress.com/downloads/491

All processed satellite imagery, data products and supporting data can be accessed492

from this project’s GitHub page: https://github.com/aesgeorges/MangroveCaribRS493
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Key Points:6

• The 2013 Pan-Caribbean drought weakened the Grand-Pierre Bay mangrove for-7

est in Haiti. Recovery was uneven, with continued coastal retreat.8

• Tide gauge data in Haiti showed local sea-level rises partly coinciding with the Pan-9

Caribbean drought. This combination of environmental factors likely stressed the10

mangrove forest, contributing to the observed pattern of coastal retreat and land-11

ward migration.12

• The forest’s landward migration is unsustainable as the available landward space13

may not support continued mangrove establishment, raising concerns about the14

long-term resilience of the forest.15
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Abstract16

As climate change increases the vulnerability of Small Island Developing States’ marginal-17

ized coastal communities and ecosystems, it is necessary to evaluate the health and re-18

silience of their natural landforms and infrastructure inventories. For example, mangroves19

could be a central component of coastal adaptation strategies for these sites due to their20

storm surge attenuating properties. One such forest is located in Haiti in the Grand-Pierre21

Bay, south of Gonaives and at the mouth of the Artibonite Valley, a region important22

for its agriculture. A remote sensing study of the Grand-Pierre Bay mangroves was con-23

ducted using imagery from PlanetLabs, machine learning tools, and vegetation health24

indices to identify and track mangrove cover, health, and spatio-temporal changes be-25

tween 2010 and 2020. Detected changes in cover and NDVI (Normalized Difference Veg-26

etation Index) values display a retreat of mangrove cover from the sea, with most of the27

retreat and health loss occurring during the 2013-2016 Pan-Caribbean drought, which28

was also experienced in Haiti. While the forest displays recovery post-drought, health29

increases and new establishments are concentrated on the landward side of the forest,30

and continued retreat is occurring on the shoreline, indicating a landward migration of31

the forest. This migration may, however, not occur fast enough to offset the losses on32

the coast, and targeted conservation efforts may be required to sustain and enhance the33

forest’s resilience.34

Plain Language Summary35

As climate change’s impact on Small Island Developing States becomes more ap-36

parent, evaluating how their natural environments cope is essential. Coastal communi-37

ties in these states often benefit from natural defenses like mangrove forests for protec-38

tion against flooding. This study focuses on the Grand-Pierre Bay mangrove forest in39

Haiti, located south of Gonaives and at the mouth of the Artibonite Valley, a vital agri-40

cultural area.41

By analyzing satellite images and land cover maps, we tracked changes in the for-42

est’s size and health between 2010 and 2020. Results showed the forest was stressed and43

retreating, with the most loss occurring between 2013 and 2016, coinciding with the Pan-44

Caribbean drought. While inland areas are recovering, the coastline mangroves continue45

to decline, indicating landward migration.46

We suggest that reduced freshwater input and rising sea levels contributed to this47

decline. If these current trends continue, this would have serious implications for man-48

grove resilience and their ability to protect against flooding in this area.49

1 Introduction50

In the face of escalating climate change impacts worldwide, governments and com-51

munities are looking at possible adaptation pathways to mitigate its effects. For Small52

Island Developing States (SIDS) in the Caribbean, the use of natural landforms such as53

wetlands in coastal defense infrastructure provides some optimism. Due to increased hur-54

ricane activity in the North Atlantic (Murakami et al., 2020), the Caribbean islands are55

particularly vulnerable to the impacts of climate change on coastlines, with increased56

flooding due to storm surges being expected as a result. In Haiti, this increased coastal57

vulnerability disproportionately impacts disadvantaged urban and rural populations and58

critical economic centers; out of the 10 communes (municipalities) with the largest num-59

ber of people living in income poverty in 2012 in Haiti, 7 are coastal (Pokhriyal et al.,60

n.d.). Mangrove forests, which are native to the region, may be viable candidates as land-61

forms to be implemented in adaptation strategies in Haiti and the larger Caribbean re-62

gion.63
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Experimental and observational studies have shown mangroves’ capacity to abate64

the flooding impacts of storm surges by reducing water elevation and velocity due to drag65

in their complex root systems. Field observations of storm surges created by Category66

3 Hurricane Wilma along the Gulf Coast of South Florida showed effective attenuation67

of storm surges by the Everglades mangroves, with the surge amplitudes decreasing by68

a rate of up to 40-50 cm/km across the forest (Zhang et al., 2012). An experiment us-69

ing scale models of mangroves by Maza et al. (2017) indicates reductions in the veloc-70

ity field by up to 50 percent and turbulence kinetic energy increases by up to fivefold within71

the root zone compared to upstream conditions. And while it is hard for numerical sim-72

ulations to accurately quantify mangrove forests’ storm surge attenuation property, hy-73

drodynamic modeling studies have demonstrated their attenuating effect on storm surge74

amplitudes and flood durations (Montgomery et al., 2019; Chen et al., 2021). Mangroves’75

ability to restrict water flow across the forest width then leads to reductions in peak wa-76

ter levels, flooding extent, and flood duration in areas within and behind the forest.77

At the same time, the degree to which mangroves are effective in providing coastal78

protection depends on their health and cover, which are influenced by environmental pro-79

cesses. Hydrodynamic properties, such as tidal patterns and hydroperiod, play a role in80

the propagation and zonation of mangroves (Crase et al., 2013; Salas-Rabaza et al., 2023).81

Salinity levels, closely linked with hydrodynamics, play an essential role in the well-being82

of mangroves, as prolonged high salinity exposure may result in restricted growth of trees83

(Krauss et al., 2008) and has been shown to be the primary contributor behind several84

mangrove diebacks around the world (Lagomasino et al., 2021; Lovelock et al., 2017).85

Other identified environmental factors influencing mangrove health include temperature,86

light, nutrients, and sediment supply. Consequently, climate events like droughts or long-87

term phenomena such as sea-level rise may threaten mangrove forests’ health and resilience.88

Before assessing the potential of current mangrove covers in the Caribbean as nat-89

ural infrastructure, it is essential to evaluate how their recent health has changed due90

to stressors related to climate and human activities. Remote Sensing tools and techniques91

are well suited to answer this question as they offer frequent data points on ecosystems92

and landforms, letting observers track these systems’ evolution over time and their re-93

sponse to external factors or events. Examples include the monitoring of crop growth94

and health (Sadeh et al., 2021) , monitoring the resilience of mangroves to sea level rise95

(Duncan et al., 2018) and measuring their biophysical characteristics (Jean-Baptiste &96

Jensen, 2006). Hence the use of satellite imagery has been shown to be appropriate for97

studying mangroves. Tools such as machine learning and vegetation indices can be used98

to track the extent and health of mangrove forests over time. Coupled with other cli-99

mate data, these time series can help us determine the impacts of climate events on these100

forests.101

In this paper, we develop and apply a workflow to assess and track mangrove for-102

est health over the last decade. Satellite images of mangrove forests in Haiti taken be-103

tween 2010 and 2020 are classified and analyzed to distinguish mangrove covers from other104

land covers. This lets us measure their extent evolution through indices and metrics that105

reflect forest health. This analysis then allows us to quantify changes in mangrove health106

in Haiti, helping us understand the relationship between their resilience and recent cli-107

mate events.108

2 Data and Study Sites109

The Grand-Pierre Bay mangrove forest, located at the mouth of the Artibonite Val-110

ley, was selected for this study due to its significant size (largest single mangrove extent111

in Haiti), and proximity to population and economic centers.112
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Satellite imagery from PlanetLabs’ RapidEye archive is used for our analysis. With113

a 5m pixel resolution, this satellite lets us better distinguish smaller-scale forest cover114

details than other satellites such as Landsat (30m resolution). PlanetLabs also provides115

high temporal resolution with near-daily observations, letting us follow seasonal changes116

in our sites. While featuring fewer bands than Landsat for analysis, the provided 5-band117

imagery (Red, Blue, Green, RedEdge, and Near-Infrared) is still well-suited to land clas-118

sification, particularly when used in conjunction with indices such as the Normalized Dif-119

ference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI).120

As such, intra-annual observations are taken between 2010 and 2020 at the Grand-Pierre121

Bay site. Cloud cover permitting, several observations are taken in a single month. With122

a decade-long observation period, we can observe seasonal and inter-annual patterns of123

mangrove health and cover.124

Baie de Grand-Pierre, Haiti (Grand-Pierre Bay)125

Figure 1. The Grand-Pierre Bay mangrove forest (outlined in solid white) is located on the

Central coastline of Haiti, South of the city of Gonaives. The major rivers’ paths (La Quinte,

L’Estère and Artibonite) are highlighted. Major settlements are outlined in dashed lines.

The Grand-Pierre Bay Mangrove Forest (outlined in white in Fig.1) is located south126

of Gonaives, the 3rd most populated city in Haiti, in the Artibonite department. It is127

the largest single extent of mangroves in Haiti and is fed by the La Quinte and L’Estère128

rivers, the two most important rivers in this department after the Artibonite River. The129

mangrove forest sits seaward of a lagoon, acting as a buffer for parts of the Artibonite130

Valley coastline. Its close proximity to Gonaives and the Artibonite Valley mouth is sig-131

nificant as this region houses one of the largest disadvantaged urban populations of the132

country, with the commune of Gonaives holding the largest number of people living in133

income poverty in Haiti in 2012 (Pokhriyal et al., n.d.). The Artibonite Valley is also134

one of the country’s most important agricultural production regions, with over 70 per-135

cent of the country’s rice production, a local staple, occurring in the valley (“Assessing136

the Potential Impact of Climate Change on Rice Yield in the Artibonite Valley of Haiti137

Using the CSM-CERES-Rice Model”, n.d.).138
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Caroni Swamp, Trininad-and-Tobago139

Figure 2. Caroni Swamp (outlined in solid white) is located on the Western coast of the is-

land of Trinidad, South of the cities of Port-of-Spain and San Juan.

To ground-truth the analyses that we present below, which focus on Grand-Pierre140

Bay, we require independent observations of land cover in order to train the land clas-141

sification model. The primary site providing this data is the Caroni Swamp (outlined142

in white in Fig. 2), which is located south of the capital city of Trinidad and Tobago,143

Port-of-Spain. It is the country’s largest mangrove wetland, protected under the Ram-144

sar Convention for International Wetland Protection. The swamp is home to numerous145

channels, lagoons, and intertidal mudflats. Unlike the chosen Haitian sites, the Caroni146

Swamp is surrounded by highly urbanized areas, with Port-of-Spain and San Juan to the147

north and Chaguanas to the southeast and built infrastructure backing the mangrove148

on its landward edge. This site is used for ground-truthing our land classification model.149

2.1 Climate Forcing during Observation Period150

Rainfall estimates from the Climate Hazards Group InfraRed Precipitation with151

Station data (CHIRPS) are used to follow climate trends in the Grand-Pierre Bay man-152

grove forest over our observation period (Fig. 14). CHIRPS is a 35+ year quasi-global153

rainfall data set which combines interpolated station data and gridded satellite-based154

precipitation estimates from NASA and NOAA (Funk et al., 2015).155

Additionally, tide gauge data from around the island of Haiti/Hispaniola (across156

Haiti and the Dominican Republic) are used to monitor the local sea level variations (Fig.157

15).158

3 Methods159

Our approach involves using remote sensing indices (defined below) to support the160

classification of images and the calculation of metrics to be analyzed.161
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3.1 Indices162

Normalized Difference Water Index - NDWI163

The Normalized Difference Water Index (NDWI) assesses the presence and extent164

of surface water bodies. It is used here to mask the open water pixels surrounding the165

mangrove forest to aid the land classification process. This is done using the Green and166

Near-Infrared bands, following the relation defined by McFeeters (1996):167

NDWI =
Xgreen−Xnir

Xgreen+Xnir

Our land classification and analysis uses the land surfaces obtained after masking out168

open water using NDWI based on a threshold of 0.2, with values higher than this thresh-169

old masked as open water.170

Normalized Difference Vegetation Index - NDVI171

The Normalized Difference Vegetation Index (NDVI) is a simple indicator of green172

vegetation’s presence, density, and health. This index uses the Near-Infrared and Red173

bands of observations as follows:174

NDV I =
Xnir −Xred

Xnir +Xred

Applied to our mangrove cover after masking it out from other land covers, we gauge175

the density and health evolution of our mangroves through time series and looking at176

the spatial difference of NDVI distribution between 2020 and 2010:177

dNDV I = NDV I2020 −NDV I2010

3.2 Land Classification using Machine Learning178

Unsupervised Learning179

Initially, we explored employing unsupervised learning to quickly determine what180

features and structures can be found and classified from our images and surface reflectance181

data. The unsupervised classified images helped us familiarize ourselves with the sites’182

likely covers and distributions. This analysis was conducted using the K-means cluster-183

ing algorithm, popular for image segmentation (Ikotun et al., 2023). This method ini-184

tializes k centroids (where k is the user-defined number of clusters). The centroids are185

then recomputed as the mean of all the data points in the cluster, and the assignment186

of data points to clusters is repeated until the centroids no longer change or a stopping187

criterion is met. For land classification, K-means clustering can group pixels in an im-188

age based on spectral properties, such as their reflectance values in different bands. It189

can identify different land cover types in an image by grouping similar pixels, such as190

water, vegetation, and urban areas.191

We used this method on the surface reflectance values to classify the land cover into192

four groups, which we then associated with open water, mangrove vegetation, viable land,193

and bare soil (mud flat). The viable land classification refers to pixels containing either194

low-density vegetation or bare soil fit for colonization by mangroves. After masking out195

the open water and bare soil covers, the remaining mangrove vegetation and viable land196

covers were compared over the years to track the patterns in mangrove cover change and197

are considered in our supervised analysis. While K-means clustering is a quick method198

of classifying land cover, we found that it was not sufficiently accurate for our classifi-199

cations, and it produced inconsistent results within and across observations. As such,200

we instead use a supervised method for our analysis, as outlined in the next section.201
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Figure 3. Ground truthing points and classifications from Caroni Swamp, Trinidad and To-

bago.

Supervised Learning202

Supervised learning is a machine learning paradigm for classifying objects using203

a set of input objects such as a vector of variables and their desired or human-labeled204

(”supervised”) outputs to train a model. This model can then be used to classify or pre-205

dict the output of other similar input objects. In a remote sensing context, this set of206

input objects or training data may look like geolocated points or polygons containing207

pixels labeled as a certain land cover type or classification. The spectral values of the208

pixel(s) contained at the point or polygon are then associated with a given category. This209

is particularly useful here as we can control the classification scheme and make use of210

ground truthing to validate our models. We used supervised learning to classify the pix-211

els of our satellite imagery into different land type categories, letting us distinguish and212

track different land cover types systematically. While unsupervised classification meth-213

ods such as K-means clustering can also be used for land classification on single obser-214

vations, they lack the higher accuracy and re-usability of supervised methods, which lets215

us reuse the same trained model on unseen data, giving us a tool to classify land on newly216

acquired satellite images continuously.217

For this study, we use ground-truthing data from the mangroves found in Caroni218

Swamp, Trinidad and Tobago. The data was collected during a two-day field outing where219

the locations of different land cover classes were recorded using a Garmin GPSMAP 78sc220

device. The data comprises 98 data points across the forest (as seen in Figure 3), and221

is made of the following classes: open water, mangroves, mudflat, intertidal zone, urban,222

and crops/other vegetation. The data is split in a 70-30 ratio, with 70 percent of the la-223

bels randomly selected to be part of the training set and the remaining 30 for our model’s224

testing validation set. In addition to the training set from the Caroni Swamp field cam-225
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Figure 4. Additional model training points from Caracol Bay, Haiti

Figure 5. Additional model training points from Grand-Pierre Bay, Haiti
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paign, training data points from other mangrove sites in Haiti, namely in Grand-Pierre226

Bay (Fig. 5) and Caracol Bay (Fig. 4) were also used. These points and their labels were227

identified using an initial unsupervised classification and confirmed using visual imagery228

of the sites. As such, while our training set was taken both from this remote identifica-229

tion and ground truths in Caroni Swamp, the validation is exclusively composed of ground230

truth data points in Caroni Swamp. Using a model trained with this data across Caribbean231

sites is appropriate here as the tracked ecosystems and landforms are similar, with the232

same mangrove tree species and land cover types being found across the studied sites.233

The algorithm used for our land classification is the Histogram-based Gradient Boost-234

ing Classifier (referred to as HGB hereafter) provided in the scikit-learn Python library.235

HGB is an implementation of the Light Gradient Boosting Machine (LightGBM) frame-236

work (Ke et al., 2017) , a widely-used machine learning solution using tree-based learn-237

ing algorithms and favored for its’ fast training speed, low memory usage, and accuracy.238

LightGBM (and the HGB implementation) was chosen over other machine learning of239

for its’ native support for missing values (NaNs) which would undermine our workflow,240

as NaN’s arise from clouds and any open water pixels that are removed from our images.241

We use HGB to classify land cover based on the pixels’ reflectance values in different bands.242

The identified mangrove pixels are then masked, isolated, and used in our analysis with243

vegetation indices to quantify the mangrove forest cover and extent changes as laid out244

in the following workflow.245

Model Validation246

Because the classifications made by the model are estimations, we use bootstrap-247

ping to conduct its validation. Bootstrapping is a resampling technique where we cre-248

ate multiple new datasets by randomly sampling subsets of the original dataset with re-249

placement. By taking samples from our original dataset and training and evaluating the250

model multiple times, we can better assess the model’s performance variability and ro-251

bustness.252

Results from validation of the trained model on randomly sampled ground-truthed253

points in Caroni Swamp, Trinidad and Tobago, show robust model performance. This254

is conducted by resampling, classifying and testing randomly sampled points from the255

validation set in a bootstrap process, with the data being resampled 800 times. Testing256

a sample point involves checking whether the classification from the model matches the257

observed classification from ground-truthing.258

To assess the model’s performance, we look at the distribution of the mean clas-259

sification accuracies for each resampling step during the bootstrap process within a 95260

percent confidence interval. With this process, we find with model accuracies falling within261

a 91.4 and 95.9 percent range (Fig. 6). While this shows high general model accuracy,262

we are also interested in class-based accuracies. The confusion matrix pictured in Fig.263

7 A. shows the prediction accuracies for each class in the main diagonal, while the off264

diagonals show what each class is misclassified as and the ratio of misclassifications. We265

see a range between 84 and 96 percent for the predicted classes, with the lowest being266

crops and the highest being mangroves. While the percentage of misclassified crop pix-267

els seems significant - with 3.9% misclassified as urban, 4.3% as mangroves and 8.1% as268

open water - the total number of misclassified pixels during the bootstrapping process269

(as seen in Fig. 7B. with the unnormalized matrix) are dwarved by the total number of270

correctly classified urban, mangroves and open water pixels. As we are principally in-271

terested in the cover of mangroves and unvegetated areas of the forest, such as mudflats,272

we have concluded the model to be robust and appropriate enough for the sake of this273

analysis.274
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Figure 6. Distribution of Model Accuracies from Bootstrapped Validation Runs.

3.3 Workflow275

Our workflow started with acquiring and preprocessing satellite images for which276

the land cover was classified. We retained the mangrove and mudflat classes for our anal-277

ysis of the classified land cover types. These classes and the NDVI band in our imagery278

were used to create products such as time series, metrics, and maps for our analysis. The279

different components of this workflow (pictured in Fig. 8) and their interactions are out-280

lined in the following subsections.281

Preprocessing Images282

Images obtained from Planet’s archive are screened based on cloud cover, with ob-283

servations presenting less than 10 percent of cloud cover being retained for analysis. This284

leaves us with 45 images between 2010 and 2020. Unfortunately, no images were found285

to be suitable in 2017, as well as the 2011, 2019, and 2020 Wet seasons. While these gaps286
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Figure 7. Confusion Matrix of Predicted vs. True Labels of the classification model on Caroni

Swamp ground truth points. A. Normalized confusion matrix. B. Unnormalized confusion matrix.

Figure 8. Methods and Tools Workflow

in the data may mean losing some of the finer details of mangrove health progression,287

we can still make out the overall trends in the 2010 to 2020 period.288

Before they are used for either model training or classification of images, the satel-289

lite images are preprocessed by masking the open water and urban areas using the NDVI290

and NDWI indices (defined below). This masking relies on thresholds in these two in-291

dices, with NDWI larger than or equal to 0.2 indicating open water pixels and NDVI lower292

than or equal to 0.2 indicating urban/non-vegetated pixels. Masking open-water and ur-293

ban areas significantly reduces the complexity of these covers for the model, making it294

more accurate at predicting these categories.295

Model Training and Selection296

Following preprocessing, reflectance values across bands are sampled at the loca-297

tions of our training and validation data points. The hyperparameters of our model were298

tuned using a grid search, and particular attention was given to the band weights. Be-299
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cause bands and layers such as RedEdge, NIR, and NDVI are good at detecting and dis-300

tinguishing vegetation from other cover types (Gandhi et al., 2015), as well as stress within301

vegetation (Boiarskii & Hasegawa, 2019), we give them a higher class weight in our model.302

The final parameters used can be found in the Appendix.303

Land Classification and Postprocessing304

Once the model trained and selected, we used it to classify the 45 observations from305

Grand-Pierre Bay. From the classified images (featuring open water, mangroves, mud-306

flat, intertidal zone, urban, and crops/other vegetation categories), we created new maps307

featuring mangrove vegetation and unvegetated regions (by combining mudflats and in-308

tertidal zones), leaving us with maps containing only the perceived extents of the man-309

grove forest by excluding urban, open water, crops, and other vegetation categories. These310

new maps were then used to compute the metrics defined below on the vegetated and311

unvegetated sections of the forest.312

3.4 Metrics313

Gross Cover Change314

The gross cover change of mangroves for a given site is the first metric we use to315

track physical changes in the wetland. While it does not tell us anything about forest316

density and spatial distribution of vegetation, it is an easy-to-calculate metric for a high-317

level understanding of how the mangrove evolves. The gross cover of a single observa-318

tion is calculated by counting the number of pixels classified as mangroves and multi-319

plying that number by the resolution of a single pixel, as provided by the specifications320

of the utilized satellite instrument. The Gross Cover Change is then the difference in gross321

mangrove cover between the two observation dates.322

Unvegetated to Vegetated Ratio - UVVR323

The Unvegetated to Vegetated Ratio is an index that helps establish vegetation cover324

status and track wetland changes (Couvillion et al., 2021). It does so by taking the ra-325

tio of unvegetated pixels (such as mud flats) to the vegetated pixels (like mangroves in326

our case). The closer to zero our UVVR, the more vegetation there is in our site and the327

more dense this forest is. At values of UVVR above 1.0, the forest has significant regions328

of unvegetated, exposed soil. As such, increases in UVVR over time indicate loss of man-329

grove forest, which could be due to natural disasters, changes in environmental condi-330

tions, or deforestation due to human activity. Conversely, decreases in UVVR denote af-331

forestation. We implement this simple relation as follows for each observation:332

UV V R =
#mangrove

#mudflats+#intertidalzone

where # is the ”number of pixels of.”333

4 Results and Discussion334

Our analysis of forest health dynamics in Grand-Pierre Bay then revolves around335

the spatio-temporal changes in NDVI values within the mangrove vegetation pixels, as336

identified by our supervised classification algorithm and their distribution. The NDVI337

observations are sorted and aggregated per seasons and years. Haiti presents 2 distinct338

seasons: wet and dry, with the wet season going from April to October, and the dry sea-339

son going from November to March.340
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Figure 9. Aggregated mangrove pixels and their NDVI values. A. Mangrove cover and NDVI

in 2010. B. Mangrove cover and NDVI in 2020.

4.1 Change in NDVI341

To capture and analyze the spatial changes in mangrove health, we use and com-342

pare the aggregated pixels classified as mangroves and their NDVI values in 2010 and343

2020 (Fig. 9). Displayed in those images are the pixels classified as mangroves for each344

year, as well as the NDVI values within them. The yellow colors stand out as locations345

where forest health is suffering, and the difference between 2010 (left) and 2020 (right)346

can most strikingly be seen along the seaward edge, with the 2020 image showing de-347

teriorating forest health along its boundary.348

By formally taking the difference in NDVI values between the aggregated data for349

the years 2010 and 2020 (dNDVI), we can identify and map pixels in the 2020 cover with350

decreases and increases in NDVI, with negative dNDVI values signifying reduced veg-351

etation health or death, and positive values signifying increased health or growth. As352

seen in Figure 10, the forest includes regions of decline and growth. This pattern here353

is displayed in terms of percentage change for a given pixel. While the change can have354

larger magnitudes than 100 percent, we limit the scale to +100 and -100 for a better vi-355

sualization of the spatial distribution of change; with NDVI values of vegetation gener-356

ally ranging between 0.2 and 1, the death of mangroves is seen as sharp declines from357

the vegetation range into values close to zero or negatives as cover transitions to bare358

soil/mud and open water. Conversely, new growth and establishments display sharp in-359

creases in NDVI values into the vegetation range. Because NDVI varies between −1 and360

1, these sharp changes frequently create relative changes larger than 100 percent (i.e.,361

a pixel with a positive value in 2010 could be negative in 2020). Displaying the full range362

of percent change then puts a highlight on the deaths and new growths of mangroves,363

–13–



manuscript submitted to Earth’s Future

Figure 10. Change in NDVI within mangrove cover between 2020 and 2010.

while losing the finer details of decreasing and increasing health in perpetuating man-364

groves.365

The declines are concentrated in the sea-facing areas (seaward), particularly in the366

central embayment of our site in Baie de la Tortue, while pockets of growth appear in367

the lagoon and land-facing areas (landward). This spatial distribution indicates a land-368

ward retreat of the forest. With areas showing declines in NDVI of 100 percent and more,369

indicating the possible death of vegetation, the forest is experiencing diebacks on its coastal370

front, while having renewed health and growth next to the lagoon.371

4.2 Mangrove Cover Change372

Similarly, we use the 2010 and 2020 aggregated mangrove covers (pixels classified373

as mangrove) to capture the change in mangrove cover. Through comparison with the374

2010 land cover classification, we identify pixels in the 2020 land cover classification in375

which mangrove was lost (the pixel was classified as mangrove in 2010, but not in 2020),376

mangrove was gained (was not mangrove in 2010, but was in 2020), and remained the377

same (was classified as mangrove in both 2010 and 2020). This mangrove cover change378
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Figure 11. Change in mangrove cover between 2010 and 2020.

map (Fig. 11) shows areas of mangrove retreat and new growth. The spatial change in379

NDVI showed strong health declines seaward, and increases landward. This is corrob-380

orated by the change in mangrove cover, with systematic retreat seen seaward, partic-381

ularly around Baie de la Tortue, while new growth is seen across the landward bound-382

ary of the forest.383

The changes in mangrove health across the forest were stark enough to trigger diebacks384

and also change the forest’s cover composition. Using the change in detected mangrove385

cover, we observe reduced mangrove cover mainly in the Baie de la Tortue between 2010386

and 2020. Following the gross mangrove cover and UVVR progression and their year-387

to-year percent change in Table 1, we see a sharp decline in mangrove cover and UVVR388

in 2013, followed by a timid and varied recovery of mangrove cover, most likely driven389

by new growth landward of the forest. While there was a strong initial recovery of cover390

and UVVR in 2014, this recovery stalls in 2017, and the forest cover and ratio of veg-391

etation to unvegetated did not recover to pre-2013 levels, implying that while the for-392

est showed some resilience, it displays a net loss of cover, and the recovery and landward393

migration of cover did not keep up with the continued loss on the coastline.394
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Table 1. Mangrove Cover and UVVR Evolution

Year Mangrove Cover (km2) Percent Change UVVR Percent Change

2010 198.688 – 1.065 –
2011 200.989 1.158 1.091 2.513
2012 211.319 5.139 1.192 9.216
2013 187.708 -11.173 0.985 -17.360
2014 195.841 4.333 1.060 7.643
2015 198.585 1.401 1.058 -0.186
2016 201.019 1.226 1.098 3.729
2017 195.354 -2.818 1.013 -7.731
2018 198.919 1.825 1.061 4.760
2019 190.856 -4.054 0.947 -10.784
2020 196.018 2.705 0.983 3.802

With this new growth landward within the lagoon and intertidal zones, the Grand-395

Pierre Bay mangrove forest is effectively migrating landward and retreating from the coast-396

line. This process is unfortunately unsustainable, as it appears that even over the 10-397

year observation period, the landward progression of the mangrove was insufficient to398

offset the loss of forest on its seaward edge. Additionally, there is the question of space,399

as not all of the intertidal zone may be suitable for new establishments, and that space400

is limited. This has implications for the coastal defense properties of this mangrove for-401

est in the future that will need to be further studied to better assess its role in the coastal402

protection of this region.403

4.3 Spatio-Temporal Change in the Forest404

This pattern of decline and growth in the forest was not a constant spatial or tem-405

poral process. In Fig. 12 , stacked ridge plots show the seasonal variation of NDVI val-406

ues found in the forest across the observation period. NDVI values from all observations407

are aggregated per season, wet and dry, across the decade of observations, with each ridge408

displaying the distribution of values for each season. A look at seasonal NDVI distribu-409

tions within the mangrove forest, while having alternating trends pre-2013, shows a con-410

sistent decrease in mangrove health after the 2013 dry season. This decline slows down411

in 2016, with distributions having smaller left tails and lower upper bounds 2018 forward.412

This move and change in the distributions may indicate a reorganization in the forest413

structure. This restructuring of the forest would hint at an underlying environmental414

process driving this redistribution of cover.415

Two possible candidates are sea-level rise and changes in climate and precipitation.416

Between 2013 and 2015, Haiti suffered through the unprecedented Pan-Caribbean drought,417

which heavily impacted precipitations, freshwater outflows, and precipitation-evapotranspiration418

balance in the region (Herrera et al., 2018). Precipitation estimates from CHIRPS show419

a sharp decline in wet season precipitations in the Artibonite region. Figure 14, which420

displays the distribution of precipitations in wet and dry seasons from 2000 to 2021 wa-421

ter years, features a strong decline between 2013 and 2016, with lower means and heavy422

precipitation in both the wet and dry seasons, confirming lower precipitation and fresh-423

water inputs in the forest.424

Coincidentally, tide gauge data around the island of Haiti showcase rises in local425

sea level between 2010 and 2015, followed by a decrease between 2015 and 2017 (Fig. 15).426

While the lack of long-term, continuous tidal data in the region makes it hard to char-427

acterize regional sea-level rise, this local variation in sea-level across the island indicates428

possible sea and wave action stressors on the coastline of the mangrove forest.429
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Figure 12. Seasonal Distribution of NDVI values within mangrove cover in Grand-Pierre Bay.

The green dotted line represents the NDVI threshold for healthy vegetation (NDVI = 0.7).

–17–



manuscript submitted to Earth’s Future

Figure 13. Progression of NDVI changes during the 2010 decade. A. Features the pre-drought

changes (2010-2013). B. Features change during the drought period (2013-2015). C. Features

post-drought changes (2015-2020).

This change in structure can be seen by looking at the time progression of spatial430

change in forest health. (Fig. 13) shows the spatial change in NDVI between the follow-431

ing three periods: pre-drought 2010-2013 (Fig. 13A.), drought 2013-2015 (Fig. 13B.),432

and post-drought 2015-2020 (Fig. 13C.). While some light decline can be seen in the Baie433

de la Tortue, the forest sees increases in NDVI in most locations. The 2013-2015 drought434

period saw a uniform decline in the forest, most accentuated in coastal-facing areas. The435

post-drought recovery of the forest is, however, not uniform, with the decline continu-436

ing in the coastal facing regions and light increases in NDVI occurring in the landward437

regions. Looking at these three periods, we observe that the Pan-Caribbean drought co-438

incides with an acceleration of the seaward loss of mangroves.439

We hypothesize that the reduced freshwater inputs from the drought likely raised440

the salinity levels in the forest, leaving mangroves more vulnerable to sea action and other441

environmental stressors. A review on the environmental drivers of mangrove establish-442

ment and early development by (Krauss et al., 2008) frames temperature, light, flood-443

ing, salinity, and nutrients as the major ecophysiological health factors for this critical444

life stage of mangroves. While we were not able to acquire observations of local temper-445

ature or light changes, it is safe to say that the combined effects of drought and rising446

local sea levels would disrupt flooding regimes, freshwater inputs, and nutrient inputs447

from rivers. These disruptions would potentially raise salinity levels in the forest, decrease448

nutrient inputs, and expose the coastal front of the forest. The spatial variability in man-449

grove health and cover change is then most likely the result of the combined actions of450

regional sea-level rise on weakened mangrove trees in low-lying areas farthest from river451

outflows, which were likely most impacted by high salinity during the drought, leading452

to diebacks, and more difficult reestablishment in the same areas.453

5 Conclusions454

A sharp decline in mangrove cover and health was observed during the 2013-2016455

Haitian drought, followed by a spatially heterogeneous recovery, with most of it occur-456

ring on the landward area of the forest and continued retreat happening along its sea-457

ward edge, particularly along the shore of Baie de la Tortue (Fig. 1). This indicates re-458

silience to environmental stressors in the forest, but not an equal one; as the forest re-459
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Figure 14. Estimated Precipitation Distributions in the Artibonite Region. Estimations are

generated by ClimateEngine.org through the CHIRPS dataset (2000-2020).

covers from lowered freshwater inputs and local rises in sea-level, the forest migrates land-460

ward. This landward migration is unsustainable, as it may not be able to occur fast enough461

to keep up with the increased frequency and severity of climate change induced environ-462

mental stressors, and as not all of the available space landward is suitable for mangrove463

establishment.464

To ensure the continuation of the protection benefits of this mangrove forest, tar-465

geted conservation and restoration efforts may be needed on forest’s most vulnerable re-466

gions on the coastline, while supporting the further establishment of mangroves land-467

ward. Based on these new understandings of how mangrove forest may evolve under cli-468

mate forcing, future work may include hydrodynamic studies to quantify the change in469

protection services offered by this landform. Only with an integrated consideration of470

how the ecology and the climate forcing evolve can we achieve a resilient future that makes471

most effective use of these natural protective features.472

Open Research Section473

Rainfall estimates can be accessed from the Climate Hazard Center database at474

UC Santa Barbara via the ClimateSERV online toolkit: https://climateserv.servirglobal.net.475

To obtain the data, follow the ”Getting Started” link, then upload a zipped shapefile of476

the Artibonite River Watershed as an Area of Interest (AOI). This file is available in the477

project’s GitHub repository under datasets/Shapefiles/Artibonite AOI.zip. Next,478

select ”Observation” as the Data Type, choose ”UCSB CHIRPS Rainfall” as the Data479

Source, set the Calculation to ”Average,” and specify a date range from 01/01/2000 to480

12/31/2020. Ensure that you ”Add Query” and then ”Submit Query.” After process-481

ing, the dataset will be available for download as a .csv file.482

Alternatively, the raw precipitation raster files are accessible in the CHIRPS dataset483

directory at https://data.chc.ucsb.edu/products/CHIRPS-2.0. Monthly rainfall es-484

timates for the Caribbean are available in the camer-carib monthly directory, while global485

daily estimates can be found in the global daily directory. Using the AOI, mean daily486

precipitation can be derived for the same time period.487
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Figure 15. Yearly mean sea levels from tide gauge data in Haiti and the Dominican Republic.

Tidal gauge data in Port-au-Prince, Punta Cana and Puerto Plata are hosted by488

the University of Hawaii Sea Level Center and can be accessed through GESLA (Global489

Extreme Sea Level Analysis) (Haigh et al., 2021), (Woodworth et al., 2016), (Caldwell490

et al., 2015): https://gesla787883612.wordpress.com/downloads/491

All processed satellite imagery, data products and supporting data can be accessed492

from this project’s GitHub page: https://github.com/aesgeorges/MangroveCaribRS493
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